Faculty Submitting: Allison Kelly

Specify here whether "Pre" or "End" of Unit and the Unit #: End Unit 4

Categorize and predict the products for metathesis, combination, decomposition, acid/base, oxidation and		
precipitation reactions		
AND Define an	AND Define and distinguish between Armhenius and Provested Levers saids and heres	
Dejine un	u aisinguish beiween Armenius and Bronsieu-Lowry acias and bases	
Unit 4_	Canvas Question Type: Multiple Choice	
Question	QUESTION GROUP	
1		
1a	What solid precipitates when solutions of $Na_3PO_{4(aq)}$ and $CaCl_{2(aq)}$ are mixed?	
	Correct Answer: $Ca_3(PO_4)_{2(s)}$	
	Wrong Answers:	
	NaCl _(s)	
	Na ₃ Ca _(s)	
	$Cl_2PO_{4(s)}$	
1b	What solid precipitates when solutions of $AgNO_{3(aq)}$ and $MgCl_{2(aq)}$ are mixed?	
	Correct Answer: AgCl _(s)	
	Wrong Answers:	
	$Mg(NO_3)_{2(s)}$	
	AgMg _(s)	
	NO ₃ Cl _{2(s)}	
Read	https://openstax.org/books/chemistry-2e/pages/4-2-classifying-chemical-reactions#fs-	
More	<u>idp140132617697568</u>	
Unit 4_	Canvas Question Type: Multiple Choice	
Question	QUESTION GROUP	
2		
2a	What solid precipitates when solutions of Ba(OH) _{2(aq)} and FeCl _{3(aq)} are mixed?	
	Correct Answer: Fe(OH) _{3(s)}	
	Wrong Answers	
	BaClace	
	BaFe _(c)	
	$Cl_{3}(OH)_{2(s)}$	

2b	What solid precipitates when solutions of $CaI_{2(aq)}$ and $K_2SO_{4(aq)}$ are mixed?
	Correct Answer: CaSO _{4(s)}
	Wrong Answers:
	$\mathrm{KI}_{(\mathrm{s})}$
	CaK _{2(s)}
	$I_2SO_{4(s)}$
Read	https://openstax.org/books/chemistry-2e/pages/4-2-classifying-chemical-reactions#fs-
More	<u>idp140132617697568</u>
Unit 4_	Canvas Question Type: Multiple Answer
Question	QUESTION GROUP
3	
3a	Select all of the spectator ions in the following reaction:
	$Na_{2}S_{(aq)} + Fe(NO_{3})_{2(aq)} \rightarrow FeS_{(s)} + 2NaNO_{3(aq)}$
	Correct Answers:
	Na ⁺
	NO ₃ -
	Wrong Answers:
	S ²⁻
	Fe ²⁺
3b	Select all of the spectator ions in the following reaction:
	$2\text{LiF}_{(aq)} + \text{Pb}(\text{C}_2\text{H}_3\text{O}_2)_{2(aq)} \rightarrow 2\text{LiC}_2\text{H}_3\text{O}_{2(aq)} + \text{PbF}_{2(s)}$
	Correct Answers:
	Li ⁺
	$C_2H_3O_2^-$
	Wrong Answers:
	F-
	Pb ²⁺
Read	https://openstax.org/books/chemistry-2e/pages/4-2-classifying-chemical-reactions#fs-
More	<u>idp140132617697568</u>
Unit 4_	Canvas Question Type: Multiple Answer
Question	QUESTION GROUP
4	
4a	Select all the spectator ions when $CuF_{2(aq)}$ is mixed with $K_2CO_{3(aq)}$

	Correct Answers:
	\mathbf{K}^+
	F
	wrong Answers: Cv^{2+}
	$C0^{2-}$
4b	Select all the spectator ions when $CuClO_{4(aq)}$ is mixed with $NaBr_{(aq)}$
	Correct Answers:
	Na ⁺
	ClO ₄ -
	Wrong Answers
	Cu ⁺
	Br ⁻
Read	https://openstax.org/books/chemistry-2e/pages/4-2-classifying-chemical-reactions#fs-
More	<u>idp140132617697568</u>
Unit 4_	Canvas Question Type: Multiple Choice
Question	QUESTION GROUP
5	
5a	Select the net ionic equation for the following reaction:
54	$\text{NH}_{4}\text{Cl}_{(2)} + \text{AgNO}_{2(2)} \rightarrow$
	(iii 4 Ci(aq) + i 15 (Co ₃ (aq))
	Correct Answer:
	$Ag^{+}_{(aq)} + Cl^{-}_{(aq)} \rightarrow AgCl_{(s)}$
	XX7 A
	wrong Answers:
	$\mathbf{NH}_{4} (\mathbf{aq}) + \mathbf{NO}_{3} (\mathbf{aq}) \rightarrow \mathbf{NH}_{4} \mathbf{NO}_{3(s)}$
	$NH_4Cl_{(aq)} + AgNO_{3(aq)} \rightarrow NH_4NO_{3(s)} + AgCl_{(aq)}$
	$\mathbf{NH}_{4}\mathbf{CI}_{(aq)} + \mathbf{AginO}_{3(aq)} \rightarrow \mathbf{NH}_{4}\mathbf{NO}_{3(aq)} + \mathbf{AgCI}_{(s)}$
	$\mathbf{NH}_{4}(_{\mathrm{aq}}) + \mathbf{CI}_{\mathrm{(aq)}} + \mathbf{Ag}(_{\mathrm{aq}}) + \mathbf{NO}_{3}(_{\mathrm{aq}}) \rightarrow \mathbf{NH}_{4}(_{\mathrm{aq}}) + \mathbf{NO}_{3}(_{\mathrm{aq}}) + \mathbf{AgCI}_{(\mathrm{s})}$
	$NH_4'_{(aq)} + C\Gamma_{(aq)} + Ag'_{(aq)} + NO_3'_{(aq)} \rightarrow NH_4NO_{3(s)} + Ag'_{(aq)} + C\Gamma_{(aq)}$
5b	Select the net ionic equation for the following reaction:
	$\mathrm{KOH}_{(\mathrm{ag})} + \mathrm{CuNO}_{3(\mathrm{ag})} \rightarrow$
	Correct Answer: $OH_{(aq)}^{-} + Cu_{(aq)}^{+} \rightarrow CuOH_{(s)}$
	Wrong Answers:
	$\mathrm{K^{+}_{(aq)}} + \mathrm{NO}_{3^{-}(aq)} \rightarrow \mathrm{KNO}_{3(s)}$
	$\text{KOH}_{(\text{aq})} + \text{CuNO}_{3(\text{aq})} \rightarrow \text{KNO}_{3(\text{aq})} + \text{CuOH}_{(\text{s})}$
	$\text{KOH}_{(\text{aq})} + \text{CuNO}_{3(\text{aq})} \rightarrow \text{KNO}_{3(\text{s})} + \text{CuOH}_{(\text{aq})}$

	$K^{+}_{(aq)} + OH^{-}_{(aq)} + Cu^{+}_{(aq)} + NO_{3}^{-}_{(aq)} \rightarrow K^{+}_{(aq)} + NO_{3}^{-}_{(aq)} + CuOH_{(s)}$
	$\mathrm{K^{+}_{(aq)}} + \mathrm{OH^{-}_{(aq)}} + \mathrm{Cu^{+}_{(aq)}} + \mathrm{NO_{3^{-}(aq)}} \rightarrow \mathrm{KNO_{3(s)}} + \mathrm{Cu^{+}_{(aq)}} + \mathrm{OH^{-}_{(aq)}}$
Read	https://openstax.org/books/chemistry-2e/pages/4-2-classifying-chemical-reactions#fs-
More	<u>idp140132617697568</u>
	https://openstax.org/books/chemistry-2e/pages/4-1-writing-and-balancing-chemical-equations
Unit 4_	Canvas Question Type: Multiple Drop Down
Question	QUESTION GROUP
6	
ба	$H_2SO_{3(aq)} + 2NaOH_{(aq)} \rightarrow 2H_2O_{(1)} + Na_2SO_{3(aq)}$
	In the above reaction, which compound is acting as the acid? [dropone]
	In the above reaction, which compound is acting as the base? [droptwo]
	Dropone: H ₂ SO ₃
	NaOH
	H2O
	Na2SO3
	Drop'Iwo: NaOH
	H2O
	Na2SO3
	H2505
6b	$\mathrm{HClO}_{3(\mathrm{aq})} + \mathrm{KOH}_{(\mathrm{aq})} \mathrm{H}_2\mathrm{O}_{(\mathrm{l})} + \mathrm{KClO}_{3(\mathrm{aq})}$
	In the above reaction, which compound is acting as the acid? [dropone]
	In the above reaction, which compound is acting as the base? [droptwo]
	Dropone: HClO3
	КОН
	H2O
	KClO3
	Droptwo: KOH
	H2U KClop
Read	https://openstax.org/books/chemistry-2e/pages/4-2-classifying-chemical-reactions
More	

	are water molecules, hydronium ions, and dissociated anions. In the box labeled Solution3,
	there are water molecules, acid molecules, hydronium ions, and dissociated anions.
	Correct Answer: Solution 2
	Wrong Answers
	Solution 3
	Solution 1
	All three solutions
Read	https://openstax.org/books/chemistry-2e/pages/4-2-classifying-chemical-
More	reactions#CNX_Chem_04_02_HClsoln
T T 1 / 4	
Unit 4_	Canvas Question Type: Formula
Question 8	QUESTION GROUP
0	
8a	What is the oxidation number of X, in $XO_3^{-[b]}$
**	6-b
	b 1 to 3, no decimal
8b	What is the oxidation number of X in $XO_4^{-[b]}$
	8-b
	b: 1 to 3, no decimal
Read	https://openstax.org/books/chemistry-2e/pages/4-2-classifying-chemical-reactions
More	
Video	Youtube: <u>https://youtu.be/z-7Qk1-SqxY</u>
	Gdrive: https://drive.google.com/file/d/19VNksnlrAIS6hQkCaVVoUIR4-
	uTDU6li/view?usp=sharing
Unit 4	Canvas Ouestion Type: Fill in multiple blanks
Question	QUESTION GROUP
9	
0.0	Cive the exidetion number for each element in the following compound. Do sum to include the
9a	Give the oxidation number for example: ± 2 or ± 2 etc.
	sign on the number, for example. 12 or -2 etc.
	PbSO ₄
	Ph [P]
	S [S]
	0[0]

	+2,+6,-2
9b	Give the oxidation number for each element in the following compound. Be sure to include the sign on the number, for example: +2 or -2 etc.
	FeCO ₃
	Fe [F]
	C [C]s O [O]
	+2, +4, -2
Read More	https://openstax.org/books/chemistry-2e/pages/4-2-classifying-chemical-reactions
Unit 4_	Canvas Question Type: Fill in multiple blanks
Question 10	QUESTION GROUP
10a	Give the oxidation number for each element in the following compound. Be sure to include the sign on the number, for example: +2 or -2 etc.
	MnO ₂
	Mn [Mn]
	O [O]
	+4,-2
10b	Give the oxidation number for each element in the following compound. Be sure to include the sign on the number, for example: +2 or -2 etc.
	H ₂ O
	H [H] O [O]
	+1,-2
Read	https://openstax.org/books/chemistry-2e/pages/4-2-classifying-chemical-reactions
More	
Unit 4_ Question 11	Canvas Question Type: Multiple Drop Downs

**	In the following reaction, identify the role of each species:
	$\mathrm{H}_{2(\mathrm{g})} + 2\mathrm{OH}_{\mathrm{(aq)}}^{-} + \mathrm{Ni}_{\mathrm{(aq)}}^{2+} \rightarrow \mathrm{Ni}_{(\mathrm{s})} + 2\mathrm{H}_{2}\mathrm{O}_{(\mathrm{l})}$
	Oxidized: [dropone]
	Reduced: [droptwo]
	Deducing Agent/Oxidant: [dropfour]
	Reducing Agent/Reductant: [drop1our]
	DropOne: H2
	OH
	Ni2+
	Ni(s)
	H(0)
	DropTwo: Ni2+
	H2
	Ni(s)
	H2O
	OH-
	DropThree: Ni2+
	H2
	Ni(s)
	H2O
	OH-
	DropFour: H2
	OH-
	Ni2+
	Ni(s)
	H_{20}
Read	https://openstax.org/books/chemistry-2e/pages/4-2-classifying-chemical-reactions
More	
Video	Youtube: https://youtu.be/t8sO1yogCXw
, ideo	Gdrive:
	https://drive.google.com/file/d/1X5zvZv7i2gWT7VG3GqwhzN6x7frOVZHI/view?usp=sharing
.	
Unit 4_	Canvas Question Type: Multiple Drop Downs
Question	
12	

In the following reaction, identify the role of each species:
NO - $4U^+$ C - C^{-3+} NO + 2U O
$\mathbf{NO}_{3}_{(aq)} + 4\mathbf{H}_{(aq)} + \mathbf{CI}_{(s)} \rightarrow \mathbf{CI}_{(aq)} + \mathbf{NO}_{(g)} + 2\mathbf{H}_{2}\mathbf{O}_{(l)}$
Oxidized: [dropone]
Reduced: [droptwo]
Oxidizing Agent/Oxidant: [dropthree]
Reducing Agent/Reductant: [dropfour]
Dropone: Cr(s)
Cr3+
NO3-
H+
NO
H2O
DropTwo: NO3-
Cr(s)
Cr_{3+}
H2O
H+
NO
DropThree: NO3-
Cr(s)
Cr_{3+}
H2O
H_+
NO
Dropfour: Cr(s)
Cr3+
NO3-
NO
H2O
Read https://opanstay.org/books/chamistry_2e/pages/4_2_classifying_chamical_reactions
More
Balance chemical reactions

Unit 4_	Canvas Question Type: Fill in Multiple Blanks
Question	
13	
	Balance the following chemical reaction, be sure to include "1" in the blank for any
	compounds with a stoichiometric coefficient of 1.
	[ang] Fa O ([thread CO) [true] Fa ([thread] CO
	$[One] \operatorname{Fe}_2 \operatorname{O}_{3(s)} + [Unree] \operatorname{CO}_{(g)} \rightarrow [Uwo] \operatorname{Fe}_{(1)} + [Unreeb] \operatorname{CO}_{2(g)}$
Read	https://openstax.org/books/chemistry-2e/pages/4-1-writing-and-balancing-chemical-equations
More	https://openstax.org/000ks/enemistry/20/pages/1-1 whiting and bulanems enemiear equations
More	
Unit 4_	Canvas Question Type: Fill in Multiple Blanks
Question	
14	
	Balance the following chemical reaction, be sure to include "1" in the blank for any
	compounds with a stoichiometric coefficient of 1.
	$[one] C_9H_{20(l)} + [fourteen] O_{2(g)} \rightarrow [ten] H_2O_{(l)} + [nine] CO_{2(g)}$
Read	https://openstax.org/books/chemistry-?e/pages/4-1-writing-and-balancing-chemical-equations
More	https://openstux.org/books/enemistry/20/pages/+1 writing and balaneing enemiear equations
WIOIC	
Unit 4_	Canvas Question Type: Fill in Multiple Blanks
Question	
15	
	Balance the following chemical reaction, be sure to include "1" in the blank for any
	compounds with a stoichiometric coefficient of 1.
	$[two] I i + [twoh] H O \rightarrow [twoe] I i O H + [one] H$
	$[two] \operatorname{Ll}_{(s)} + [twoo] \operatorname{H}_2 O_{(1)} \rightarrow [twoo] \operatorname{LlOH}_{(aq)} + [OHe] \operatorname{H}_{2(g)}$
Read	https://openstax.org/books/chemistry-2e/pages/4-1-writing-and-balancing-chemical-equations
More	
Unit 4_	Canvas Question Type: Fill in Multiple Blanks
Question	
16	
	Balance the following chemical reaction, be sure to include "1" in the blank for any
	compounds with a stoichiometric coefficient of 1.
	[three] $C_{2}C_{2} \rightarrow [siv] LiC_{2} \rightarrow [siv] C_{2}(PO)$
	$[unce] = ucr_2(aq) + [uve] = L_3 + O_4(aq) + [Six] = LCr(aq) + [One] = Ca_3(1 + O_4)_2(s)$
Read	https://openstax.org/books/chemistry-2e/pages/4-1-writing-and-balancing-chemical-equations
More	

Perform calculations relating quantities in chemical reactions, including limiting reactant, theoretical		
yield, and	yield, and percent yield calculations	
Unit 4	Canvas Question Type: Formula	
Ouestion	Canvas Question Type. Formula	
Question 17		
1/		
	How many mols of HCl are required to complete react [mol] mols of aluminum according to	
	the following, balanced chemical reaction:	
	$2Al(s) + 6HCl_{co} \rightarrow 2AlCl_{co} + 3H_{co}$	
	$211(3) + 01101_{(aq)} + 21101_{3(aq)} + 511_{2(g)}$	
	mol*3	
	mol 0.1 to 1.9, to three decimal places	
Read	https://openstax.org/books/chemistry-2e/pages/4-3-reaction-stoichiometry	
More		
TI:4 A	Conversion Trunce Formula	
Omertian	Canvas Quesuon Type: Formula	
Question		
18		
	If [mol] mols of aluminum are reacted with excess HCl, how many mols of hydrogen gas will	
	he produced?	
	$2Al(s) + 6 HCl_{(s)} \rightarrow 2AlCl_{(s)} + 3H_{2(s)}$	
	$2\pi n(3) + 0 \pi c n(aq) + 2\pi n c n_{3(aq)} + 3\pi n_{2(g)}$	
	mol*3/2	
	mol: 0.1 to 1.9 to three decimal places	
Read	https://openstax.org/books/chemistry-2e/pages/4-3-reaction-stoichiometry	
More		
TT A A		
Unit 4_	Canvas Question Type: Formula	
Question		
19		
**	Urea $(O(NH_{0}))$ can be synthesized via the following chemical reaction. If [mass] g of	
	ammonia is reacted with excess carbon monovide, how many grams of urea are formed?	
	annionia is reacted with excess carbon monoxide, now many grains of thea are formed?	
	$2NH_{ac} + CO_{c} \rightarrow CO(NH_{a})_{ac} + H_{a}O_{a}$	
	$21111_{3(g)} + CO(g) + CO(1112/2(s) + 112O(l))$	
	mass/17.031/2*60.06	
	mass: 1.5-5.5, two decima places	
	·	

More Video Youtube: https://youtu.be/BnNgbVBhyEg Gdrive: https://drive.google.com/file/d/14gb3KWuCnyIKBZBgrOyTOqWrDQH1DBJw/view?usp=sharing Unit 4_ Question Canvas Question Type: Formula 20 Formaldehyde, a naturally occur organic molecule that historically was used to preserve animal species, is carcinogenic, and has been observed in interstellar medium can be synthesized from methanol using the following reaction: CH ₃ OH ₄₀ \Rightarrow CH ₂ O ₄₀ $+$ H ₂₍₀₀ If [mass] g of methanol (CH ₃ OH) is reacted, how many grams of formaldehyde (CH ₂ O) are produced? mass/32.04*30.026 mass: 10.5 to 15.5, two decimal places Be sure to limit precision! Read https://openstax.org/books/chemistry-2c/pages/4-3-reaction-stoichiometry Video Youtube: https://youtu.be/BnNgbVBhyEg Gdrive: https://openstax.org/books/chemistry-2c/pages/4-3-reaction-stoichiometry Uide Canvas Question Type: Formula Unit 4_ Question Canvas Question Type: Formula Incomplete combustion leads to the formation of toxic compounds like carbon monoxide. How many grams of oxygen would be necessary to completely combust [mass] g of octane? 20 mass/114.23*25/2*31.999 mass: 12.5-25.0 two decimal places Read https://openstax.org/books/chemistry-2e/pages/4-3-reaction-stoichiometry	Read	https://openstax.org/books/chemistry-2e/pages/4-3-reaction-stoichiometry
VideoYoutube: https://give.google.com/file/d/14gb3KWuCnyIKBZBqrOyTOqWrDQH1DBJw/view?usp=sharing. Unit 4. QuestionCanvas Question Type: Formula**Formaldehyde, a naturally occur organic molecule that historically was used to preserve animal species, is carcinogenic, and has been observed in interstellar medium can be synthesized from methanol using the following reaction: $CH_3OH_{ip} \rightarrow CH_2O_{ip} + H_{2igo}$ If [mass] g of methanol (CH ₃ OH) is reacted, how many grams of formaldehyde (CH ₂ O) are produced?mass/32.04*30.026mass: 10.5 to 15.5, two decimal places Be sure to limit precision!Nttps://openstax.org/books/chemistry-2c/pages/4-3-reaction-stoichiometryVideoVideoVolube: https://youtu.bc/BnNgbVBhyEg Gdrive:https://drive.google.com/file/d/14gb3KWuCnyIKBZBgrOyTOqWrDOH1DBJw/view?usp=sharingUnit 4_ Question21Incomplete combustion leads to the formation of toxic compounds like carbon monoxide. How 	More	
Gdrive: https://dive.google.com/file/d/14gb3KWuCnylKBZBgrOyTOqWrDQH1DBJw/view?usp=sharinqUnit 4_ QuestionCanvas Question Type: Formula**Comvas Question Type: Formula**Formaldehyde, a naturally occur organic molecule that historically was used to preserve animal species, is carcinogenic, and has been observed in interstellar medium can be synthesized from methanol using the following reaction: $CH_3OH_{qp} \rightarrow CH_2O_{qp} + H_{2qp}$ If [mass] g of methanol (CH ₃ OH) is reacted, how many grams of formaldehyde (CH ₂ O) are produced?mass: 10.5 to 15.5, two decimal places Be sure to limit precision!MoreVideoVideoYoutube: https://openstax.org/books/chemistry-2e/pages/4-3-reaction-stoichiometryUnit 4_ Question 21Canvas Question Type: FormulaIncomplete combustion leads to the formation of toxic compounds like carbon monoxide. How many grams of oxygen would be necessary to completely combust [mass] g of octane? $2C_8H_{18(0)} + 25O_{2(p)} \rightarrow 16CO_{2(p)} + 18H_2O_{q0}$ mass: 12.5-25.0 two decimal placesRead Morehttps://openstax.org/books/chemistry-2e/pages/4-3-reaction-stoichiometry	Video	Youtube: https://youtu.be/BnNgbVBhyEg
https://drive.google.com/file/d/14gb3K/WuCnyIKBZEgrOyTOqWrDQH1DBJw/view?usp=sharing Unit 4_ Question 20 Canvas Question Type: Formula *** Formaldehyde, a naturally occur organic molecule that historically was used to preserve animal species, is carcinogenic, and has been observed in interstellar medium can be synthesized from methanol using the following reaction: CH ₃ OH ₄ @) > CH ₂ O ₄ @) + H ₂ @ If [mass] g of methanol (CH ₃ OH) is reacted, how many grams of formaldehyde (CH ₂ O) are produced? mass/32.04*30.026 mass: 10.5 to 15.5, two decimal places Be sure to limit precision! Nore Video Youtube: https://youtu.be/BnNgbVBhyEg Gdrive: https://drive.google.com/file/d/14gb3K/WuCnyIKBZBgrOyTOqWrDQH1DBJw/iew?usp=sharing Unit 4_ Question 21 Incomplete combustion leads to the formation of toxic compounds like carbon monoxide. How many grams of oxygen would be necessary to completely combust [mass] g of octane? 2C ₈ H ₄₈₀ + 25O _{2(p)} > 16CO _{2(p)} + 18H ₂ O _{4(p)} mass: 12.5-25.0 two decimal places Read More		Gdrive:
		https://drive.google.com/file/d/14gb3KWuCnyIKBZBgrOyTOqWrDQH1DBJw/view?usp=sharing
Question 20Formaldehyde, a naturally occur organic molecule that historically was used to preserve animal species, is carcinogenic, and has been observed in interstellar medium can be synthesized from methanol using the following reaction: $CH_3OH_{(p)} \rightarrow CH_2O_{(p)} + H_{2(p)}$ If [mass] g of methanol (CH ₃ OH) is reacted, how many grams of formaldehyde (CH ₂ O) are produced?mass/32.04*30.026 mass: 10.5 to 15.5, two decimal places Be sure to limit precision!Read Morehttps://openstax.org/books/chemistry-2e/pages/4-3-reaction-stoichiometryVideoYoutube: https://youtu.be/BnNgbVBhyEg Gdrive: https://drive.google.com/file/d/14gb3KWuCnylKBZBgrOyTOqWrDQH1DBJw/view?usp=sharingIncomplete combustion leads to the formation of toxic compounds like carbon monoxide. How many grams of oxygen would be necessary to completely combust [mass] g of octane? $2C_8H_{180} + 25O_{2(p)} \rightarrow 16CO_{2(p)} + 18H_2O_{(p)}$ mass: 114.23*25/2*31.999 mass: 12.5-25.0 two decimal placesRead Morehttps://openstax.org/books/chemistry-2e/pages/4-3-reaction-stoichiometry	Unit 4_	Canvas Question Type: Formula
20**Formaldehyde, a naturally occur organic molecule that historically was used to preserve animal species, is carcinogenic, and has been observed in interstellar medium can be synthesized from methanol using the following reaction: $CH_3OH_{(p)} \rightarrow CH_2O_{(p)} + H_{2(p)}$ If [mass] g of methanol (CH_3OH) is reacted, how many grams of formaldehyde (CH_2O) are produced?mass/32.04*30.026 mass: 10.5 to 15.5, two decimal places Be sure to limit precision!Read Morehttps://openstax.org/books/chemistry-2e/pages/4-3-reaction-stoichiometryVideoYoutube: https://youtu.be/BnNgbVBhyEg Gdrive: https://drive.google.com/file/d/14gb3KWuCnylKBZBgrOyTOqWrDQH1DBJw/view?usp=sharingUnit 4_ Question 21Incomplete combustion leads to the formation of toxic compounds like carbon monoxide. How many grams of oxygen would be necessary to completely combust [mass] g of octane? $2C_8H_{18(0)} + 25O_{2(p)} \rightarrow 16CO_{2(p)} + 18H_2O_{(p)}$ mass: 114.23*25/2*31.999 mass: 12.5-25.0 two decimal placesRead Morehttps://openstax.org/books/chemistry-2e/pages/4-3-reaction-stoichiometry	Question	
**Formaldehyde, a naturally occur organic molecule that historically was used to preserve animal species, is carcinogenic, and has been observed in interstellar medium can be synthesized from methanol using the following reaction: $CH_3OH_{(p)} \rightarrow CH_2O_{(p)} + H_{2(p)}$ If [mass] g of methanol (CH_3OH) is reacted, how many grams of formaldehyde (CH_2O) are produced?mass/32.04*30.026 mass: 10.5 to 15.5, two decimal places Be sure to limit precision!Read Morehttps://openstax.org/books/chemistry-2e/pages/4-3-reaction-stoichiometryVideoVideoYoutube: https://youtu.be/BnNgbVBhyEg Gdrive: https://drive.google.com/file/d/14gb3KWuCnylKBZBgrOyTOqWrDQH1DBJw/view?usp=sharingUnit 4_ Question 21Incomplete combustion leads to the formation of toxic compounds like carbon monoxide. How many grams of oxygen would be necessary to completely combust [mass] g of octane? $2C_8H_{18(t)} + 25O_{2(p)} \rightarrow 16CO_{2(p)} + 18H_2O_{(p)}$ mass/114.23*25/2*31.999 mass: 12.5-25.0 two decimal placesRead MoreMore	20	
animal species, is carcinogenic, and has been observed in interstellar medium can be synthesized from methanol using the following reaction: $CH_3OH_{(g)} \rightarrow CH_2O_{(g)} + H_{2(g)}$ If [mass] g of methanol (CH ₃ OH) is reacted, how many grams of formaldehyde (CH ₂ O) are produced?mass/32.04*30.026 mass: 10.5 to 15.5, two decimal places Be sure to limit precision!Read Morehttps://openstax.org/books/chemistry-2e/pages/4-3-reaction-stoichiometryVideoYoutube: https://youtu.be/BnNgbVBhyEg Gdrive: https://drive.google.com/file/d/14qb3KWuCnyIKBZBgrOyTOqWrDQH1DBJw/view?usp=sharingUnit 4_ Question 21Incomplete combustion leads to the formation of toxic compounds like carbon monoxide. How many grams of oxygen would be necessary to completely combust [mass] g of octane? $2C_8H_{180} + 25O_{2(g)} \rightarrow 16CO_{2(g)} + 18H_2O_{(g)}$ mass/114.23*25/2*31.999 mass: 12.5-25.0 two decimal placesRead Morehttps://openstax.org/books/chemistry-2e/pages/4-3-reaction-stoichiometry	**	Formaldehyde, a naturally occur organic molecule that historically was used to preserve
synthesized from methanol using the following reaction: $CH_3OH_{(g)} \rightarrow CH_2O_{(g)} + H_{2(g)}$ If [mass] g of methanol (CH ₃ OH) is reacted, how many grams of formaldehyde (CH ₂ O) are produced?mass/32.04*30.026mass: 10.5 to 15.5, two decimal places Be sure to limit precision!Read Morehttps://openstax.org/books/chemistry-2e/pages/4-3-reaction-stoichiometryVideoYoutube: https://youtu.be/BnNgbVBhyEg Gdrive: https://drive.google.com/file/d/14qb3KWuCnyIKBZBgrOyTOqWrDQH1DBJw/view?usp=sharingUnit 4_ Question 21Incomplete combustion leads to the formation of toxic compounds like carbon monoxide. How many grams of oxygen would be necessary to completely combust [mass] g of octane? $2C_8H_{18(0)} + 25O_{2(g)} \rightarrow 16CO_{2(g)} + 18H_2O_{(g)}$ mass: 12.5-25.0 two decimal placesRead Morehttps://openstax.org/books/chemistry-2e/pages/4-3-reaction-stoichiometry		animal species, is carcinogenic, and has been observed in interstellar medium can be
CH ₃ OH _{(\emptyset} \rightarrow CH ₂ O _{(\emptyset} + H _{2(\emptyset})If [mass] g of methanol (CH ₃ OH) is reacted, how many grams of formaldehyde (CH ₂ O) are produced?mass/32.04*30.026 mass: 10.5 to 15.5, two decimal places Be sure to limit precision!Read Morehttps://openstax.org/books/chemistry-2e/pages/4-3-reaction-stoichiometryVideoYoutube: https://youtu.be/BnNgbVBhyEg Gdrive: https://drive.google.com/file/d/14gb3KWuCnyIKBZBgrOyTOqWrDQH1DBJw/view?usp=sharingUnit 4_ Question 21Incomplete combustion leads to the formation of toxic compounds like carbon monoxide. How many grams of oxygen would be necessary to completely combust [mass] g of octane? $2C_8H_{18(0)} + 25O_{2(\emptyset) \rightarrow 16CO_{2(\emptyset) + 18H2O4(\emptyset)mass: 12.5-25.0 two decimal placesReadMorehttps://openstax.org/books/chemistry-2e/pages/4-3-reaction-stoichiometry$		synthesized from methanol using the following reaction:
If $[mass]$ g of methanol (CH3OH) is reacted, how many grams of formaldehyde (CH2O) are produced?mass/32.04*30.026mass: 10.5 to 15.5, two decimal places Be sure to limit precision!Read Morehttps://openstax.org/books/chemistry-2e/pages/4-3-reaction-stoichiometryVideoVideoYoutube: https://drive.google.com/file/d/14gb3KWuCnyIKBZBgrOyTOqWrDQH1DBJw/view?usp=sharingUnit 4_ Question 21Incomplete combustion leads to the formation of toxic compounds like carbon monoxide. How many grams of oxygen would be necessary to completely combust [mass] g of octane? $2C_8H_{18(0)} + 25O_{2(g)} \rightarrow 16CO_{2(g)} + 18H_2O_{(g)}$ mass: 12.5-25.0 two decimal placesRead Morehttps://openstax.org/books/chemistry-2e/pages/4-3-reaction-stoichiometry		$CH_{3}OH_{(q)} \rightarrow CH_{2}O_{(q)} + H_{2(q)}$
If [mass] g of methanol (CH3OH) is reacted, how many grams of formaldehyde (CH2O) are produced?mass/32.04*30.026 mass: 10.5 to 15.5, two decimal places Be sure to limit precision!Read Morehttps://openstax.org/books/chemistry-2e/pages/4-3-reaction-stoichiometryVideoVoutube: https://youtu.be/BnNgbVBhyEg Gdrive: https://drive.google.com/file/d/14gb3KWuCnylKBZBgrOyTOqWrDQH1DBJw/view?usp=sharingUnit 4_ Question 21Incomplete combustion leads to the formation of toxic compounds like carbon monoxide. How many grams of oxygen would be necessary to completely combust [mass] g of octane? $2C_3H_{18(0)} + 25O_{2(g)} \rightarrow 16CO_{2(g)} + 18H_2O_{(g)}$ mass: 12.5-25.0 two decimal placesRead Morehttps://openstax.org/books/chemistry-2e/pages/4-3-reaction-stoichiometry		
produced?mass/32.04*30.026mass: 10.5 to 15.5, two decimal places Be sure to limit precision!Read Morehttps://openstax.org/books/chemistry-2e/pages/4-3-reaction-stoichiometryVideoVideoYoutube: https://youtu.be/BnNgbVBhyEg Gdrive: https://drive.google.com/file/d/14gb3KWuCnylKBZBgrOyTOqWrDQH1DBJw/view?usp=sharingUnit 4_ Question 21Canvas Question Type: FormulaIncomplete combustion leads to the formation of toxic compounds like carbon monoxide. How many grams of oxygen would be necessary to completely combust [mass] g of octane? $2C_8H_{18(0)} + 25O_{2(g)} \rightarrow 16CO_{2(g)} + 18H_2O_{(g)}$ mass/114.23*25/2*31.999 mass: 12.5-25.0 two decimal placesRead Morehttps://openstax.org/books/chemistry-2e/pages/4-3-reaction-stoichiometry		If [mass] g of methanol (CH_3OH) is reacted, how many grams of formaldehyde (CH_2O) are
$\begin{array}{ c c c c c c } \hline mass/32.04*30.026 \\ mass: 10.5 to 15.5, two decimal places Be sure to limit precision! \\ \hline mass: 10.5 to 15.5, two decimal places Be sure to limit precision! \\ \hline mass: 10.5 to 15.5, two decimal places Be sure to limit precision! \\ \hline mass: 10.5 to 15.5, two decimal places Be sure to limit precision! \\ \hline mass/114.23*25/2*31.999 \\ \hline mass: 12.5-25.0 two decimal places \\ \hline mass: 12.5-25.0 two decimal places \\ \hline mass/114.23*25/2*31.999 \\ \hline mass: 12.5-25.0 two decimal places \\ \hline mass/114.23*25/2*31.999 \\ \hline mass: 12.5-25.0 two decimal places \\ \hline mass/114.23*25/2*31.999 \\ \hline mass: 12.5-25.0 two decimal places \\ \hline mass/114.23*25/2*31.999 \\ \hline mass: 12.5-25.0 two decimal places \\ \hline mass/114.23*25/2*31.999 \\ \hline mass: 12.5-25.0 two decimal places \\ \hline mass/114.23*25/2*31.999 \\ \hline mass: 12.5-25.0 two decimal places \\ \hline mass/114.23*25/2*31.999 \\ \hline mass: 12.5-25.0 two decimal places \\ \hline mass/114.23*25/2*31.999 \\ \hline mass: 12.5-25.0 two decimal places \\ \hline mass/114.23*25/2*31.999 \\ \hline mass: 12.5-25.0 two decimal places \\ \hline mass/114.23*25/2*31.999 \\ \hline mass: 12.5-25.0 two decimal places \\ \hline mass/114.23*25/2*31.999 \\ \hline mass: 12.5-25.0 two decimal places \\ \hline mass/114.23*25/2*31.999 \\ \hline mass/114.23*25/2*31.999 \\ \hline mass/114.23*25/2*31.999 \\ \hline mass: 12.5-25.0 two decimal places \\ \hline mass/114.23*25/2*31.999 \\ \hline mass/114.23*25/2*31.990 \\ \hline mass/114.23*25/2*31.900 \\ \hline mass/114.23*25/2*31.900 \\ \hline$		produced?
Read Morehttps://openstax.org/books/chemistry-2e/pages/4-3-reaction-stoichiometryVideoYoutube: https://youtu.be/BnNgbVBhyEg Gdrive: https://drive.google.com/file/d/14gb3KWuCnylKBZBgrOyTOqWrDQH1DBJw/view?usp=sharingUnit 4_ Question 21Canvas Question Type: FormulaIncomplete combustion leads to the formation of toxic compounds like carbon monoxide. How many grams of oxygen would be necessary to completely combust [mass] g of octane? $2C_8H_{18(1)} + 25O_{2(g)} \rightarrow 16CO_{2(g)} + 18H_2O_{(g)}$ mass: 12.5-25.0 two decimal placesRead Morehttps://openstax.org/books/chemistry-2e/pages/4-3-reaction-stoichiometry		mass/32.04*30.026
Read Morehttps://openstax.org/books/chemistry-2e/pages/4-3-reaction-stoichiometryVideoYoutube: https://youtu.be/BnNgbVBhyEg Gdrive: https://drive.google.com/file/d/14gb3KWuCnyIKBZBgrOyTOqWrDQH1DBJw/view?usp=sharingUnit 4_ Question 21Canvas Question Type: FormulaIncomplete combustion leads to the formation of toxic compounds like carbon monoxide. How many grams of oxygen would be necessary to completely combust [mass] g of octane? $2C_8H_{18(t)} + 25O_{2(g)} \rightarrow 16CO_{2(g)} + 18H_2O_{(g)}$ mass/114.23*25/2*31.999 mass: 12.5-25.0 two decimal placesRead More		mass: 10.5 to 15.5, two decimal places Resure to limit precision!
Read Morehttps://openstax.org/books/chemistry-2e/pages/4-3-reaction-stoichiometryVideoYoutube: https://youtu.be/BnNgbVBhyEg Gdrive: https://drive.google.com/file/d/14gb3KWuCnylKBZBgrOyTOqWrDQH1DBJw/view?usp=sharing.Unit 4_ Question 21Canvas Question Type: FormulaIncomplete combustion leads to the formation of toxic compounds like carbon monoxide. How many grams of oxygen would be necessary to completely combust [mass] g of octane? $2C_8H_{18(1)} + 25O_{2(g)} \rightarrow 16CO_{2(g)} + 18H_2O_{(g)}$ mass/114.23*25/2*31.999 mass: 12.5-25.0 two decimal placesRead Morehttps://openstax.org/books/chemistry-2e/pages/4-3-reaction-stoichiometry		mass. 10.5 to 15.5, two decimal places be sure to minit precision:
MoreMoreVideoYoutube: https://youtu.be/BnNgbVBhyEg Gdrive: https://drive.google.com/file/d/14gb3KWuCnylKBZBgrOyTOqWrDQH1DBJw/view?usp=sharing Unit 4_Canvas Question Type: FormulaQuestionIncomplete combustion leads to the formation of toxic compounds like carbon monoxide. How many grams of oxygen would be necessary to completely combust [mass] g of octane? $2C_8H_{18(1)} + 25O_{2(g)} \rightarrow 16CO_{2(g)} + 18H_2O_{(g)}$ mass: 12.5-25.0 two decimal placesmass: 12.5-25.0 two decimal placesRead Morehttps://openstax.org/books/chemistry-2e/pages/4-3-reaction-stoichiometry	Read	https://openstax.org/books/chemistry-2e/pages/4-3-reaction-stoichiometry
VideoYoutube: https://youtu.be/BnNgbVBhyEg Gdrive:https://drive.google.com/file/d/14gb3KWuCnylKBZBgrOyTOqWrDQH1DBJw/view?usp=sharing.Unit 4_ Question 21Canvas Question Type: FormulaIncomplete combustion leads to the formation of toxic compounds like carbon monoxide. How many grams of oxygen would be necessary to completely combust [mass] g of octane? $2C_8H_{18(1)} + 25O_{2(g)} \rightarrow 16CO_{2(g)} + 18H_2O_{(g)}$ mass/114.23*25/2*31.999 mass: 12.5-25.0 two decimal placesRead Morehttps://openstax.org/books/chemistry-2e/pages/4-3-reaction-stoichiometry	More	
Gdrive: https://drive.google.com/file/d/14gb3KWuCnyIKBZBgrOyTOqWrDQH1DBJw/view?usp=sharing.Unit 4_ Question 21Canvas Question Type: FormulaIncomplete combustion leads to the formation of toxic compounds like carbon monoxide. How many grams of oxygen would be necessary to completely combust [mass] g of octane? $2C_8H_{18(1)} + 25O_{2(g)} \rightarrow 16CO_{2(g)} + 18H_2O_{(g)}$ mass/114.23*25/2*31.999 mass: 12.5-25.0 two decimal placesRead Morehttps://openstax.org/books/chemistry-2e/pages/4-3-reaction-stoichiometry	Video	Youtube: https://youtu.be/BnNgbVBhyEg
https://drive.google.com/file/d/14gb3KWuCnyIKBZBgrOyTOqWrDQH1DBJw/view?usp=sharingUnit 4_ Question 21Canvas Question Type: FormulaIncomplete combustion leads to the formation of toxic compounds like carbon monoxide. How many grams of oxygen would be necessary to completely combust [mass] g of octane? $2C_8H_{18(1)} + 25O_{2(g)} \rightarrow 16CO_{2(g)} + 18H_2O_{(g)}$ mass/114.23*25/2*31.999 mass: 12.5-25.0 two decimal placesRead Morehttps://openstax.org/books/chemistry-2e/pages/4-3-reaction-stoichiometry		Gdrive:
Unit 4_ Question 21Canvas Question Type: Formula21Incomplete combustion leads to the formation of toxic compounds like carbon monoxide. How many grams of oxygen would be necessary to completely combust [mass] g of octane? $2C_8H_{18(1)} + 25O_{2(g)} \rightarrow 16CO_{2(g)} + 18H_2O_{(g)}$ 22mass/114.23*25/2*31.999 mass: 12.5-25.0 two decimal placesRead Morehttps://openstax.org/books/chemistry-2e/pages/4-3-reaction-stoichiometry		https://drive.google.com/file/d/14gb3KWuCnyIKBZBgrOyTOqWrDQH1DBJw/view?usp=sharing
Question 21Incomplete combustion leads to the formation of toxic compounds like carbon monoxide. How many grams of oxygen would be necessary to completely combust [mass] g of octane? $2C_8H_{18(1)} + 25O_{2(g)} \rightarrow 16CO_{2(g)} + 18H_2O_{(g)}$ mass/114.23*25/2*31.999 mass: 12.5-25.0 two decimal placesRead Morehttps://openstax.org/books/chemistry-2e/pages/4-3-reaction-stoichiometry	Unit 4_	Canvas Question Type: Formula
21Incomplete combustion leads to the formation of toxic compounds like carbon monoxide. How many grams of oxygen would be necessary to completely combust [mass] g of octane? $2C_8H_{18(1)} + 25O_{2(g)} \rightarrow 16CO_{2(g)} + 18H_2O_{(g)}$ mass/114.23*25/2*31.999 mass: 12.5-25.0 two decimal placesRead Morehttps://openstax.org/books/chemistry-2e/pages/4-3-reaction-stoichiometry	Question	
Incomplete combustion leads to the formation of toxic compounds like carbon monoxide. How many grams of oxygen would be necessary to completely combust [mass] g of octane? $2C_8H_{18(1)} + 25O_{2(g)} \rightarrow 16CO_{2(g)} + 18H_2O_{(g)}$ mass/114.23*25/2*31.999 mass: 12.5-25.0 two decimal placesRead Morehttps://openstax.org/books/chemistry-2e/pages/4-3-reaction-stoichiometry	21	
many grams of oxygen would be necessary to completely combust [mass] g of octane? $2C_8H_{18(1)} + 25O_{2(g)} \rightarrow 16CO_{2(g)} + 18H_2O_{(g)}$ mass/114.23*25/2*31.999mass: 12.5-25.0 two decimal placesRead Morehttps://openstax.org/books/chemistry-2e/pages/4-3-reaction-stoichiometry		Incomplete combustion leads to the formation of toxic compounds like carbon monoxide. How
$\begin{array}{c c} 2C_8H_{18(1)} + 25O_{2(g)} \rightarrow 16CO_{2(g)} + 18H_2O_{(g)} \\ \\ \hline mass/114.23*25/2*31.999 \\ \\ mass: 12.5-25.0 \text{ two decimal places} \\ \hline \\ $		many grams of oxygen would be necessary to completely combust [mass] g of octane?
mass/114.23*25/2*31.999 mass: 12.5-25.0 two decimal places Read More https://openstax.org/books/chemistry-2e/pages/4-3-reaction-stoichiometry		$2C_8H_{18(l)} + 25O_{2(g)} \rightarrow 16CO_{2(g)} + 18H_2O_{(g)}$
mass: 12.5-25.0 two decimal places Read More https://openstax.org/books/chemistry-2e/pages/4-3-reaction-stoichiometry		mass/114.23*25/2*31.999
mass: 12.5-25.0 two decimal places Read More https://openstax.org/books/chemistry-2e/pages/4-3-reaction-stoichiometry		
Read https://openstax.org/books/chemistry-2e/pages/4-3-reaction-stoichiometry More		mass: 12.5-25.0 two decimal places
More	Read	https://openstax.org/books/chemistry-2e/pages/4-3-reaction-stoichiometry
	More	

Unit 4_ Question 22	Canvas Question Type: Formula
	Hydrochloric acid is reacted with iron (II) sulfide to form hydrogen sulfide according to the balanced chemical equation. If [mola] mols of hydrochloric acid are reacted with [molb] mols of iron (II) sulfide, how many mols of hydrogen sulfide are formed? $2HCl_{(aq)} + FeS_{(s)} \rightarrow H_2S_{(aq)} + FeCl_{2(aq)}$
	mola/2
	mola: 1.5-2, two decimal places molb: 1.2-1.4, two decimal places
Read	https://openstax.org/books/chemistry-2e/pages/4-4-reaction-yields
whote	
Unit 4_ Question 23	Canvas Question Type: Multiple Choice
	In the following reaction, which reactant is the limiting reactant?
	Wrong: A

Read	https://openstax.org/books/chemistry-2e/pages/4-4-reaction-yields
More	
Unit 4_ Question 24	Canvas Question Type: Formula
***	How many grams of precipitant are formed when [vola] mL of a [Ma] M aqueous solution of magnesium bromide is combined with [volb] mL of a [Mb] M aqueous solution of silver nitrate?
	volb/1000*Mb*187.77
	vola; 20-25, two decimals volb: 20-25, two decimals Ma: 0.6 to 0.9, two decimals Mb: 0.1 to 0.4, two decimals
Read	https://openstax.org/books/chemistry-2e/pages/4-4-reaction-yields
More	
Video	Youtube: <u>https://youtu.be/wQYj-sFUynA</u> Gdrive: <u>https://drive.google.com/file/d/1PBPQaSwFFjAkV12HfYjeh2psImic5DGt/view?usp=sharing</u>
Unit 4_ Question 25	Canvas Question Type: Formula
**	Hydrazinecan be synthesized via the following reaction: $2NH_{3(aq)} + Cl_{2(g)} + 2NaOH_{(aq)} \rightarrow N_2H_{4(aq)} + 2NaCl_{(aq)} + 2H_2O_{(1)}$ What is the theoretical yield of hydrazine when [massN] g NH ₃ is reacted with [massC] g of Cl ₂ and excess sodium hydroxide?massN/17.031/2*32.0452
	massN: 1 to 2.5 grams, two decimal places massC: 6 to 7.5 grams, two decimal places
Read More	https://openstax.org/books/chemistry-2e/pages/4-4-reaction-yields
Video	Youtube: <u>https://youtu.be/6ePLxf4uBUg</u> Gdrive: <u>https://drive.google.com/file/d/16qdhKfKOhFcGXalDjOaQ3qj1US0k40U9/view?usp=sharing</u>

Unit 4_	Canvas Question Type: Formula
Question	
26	
* *	Based on the balanced chemical reaction, how many mols of excess reactant is left when
	[massM] g of magnesium is reacted with [vol] mL of [mol] M of hydrochloric acid?
	$M_{\alpha} \rightarrow 2HCI \rightarrow M_{\alpha}CI \rightarrow H$
	$\operatorname{Wg}_{(s)} + 2\Pi \operatorname{CI}_{(aq)} \rightarrow \operatorname{Wg}_{\operatorname{CI}_{2(aq)}} + \Pi_{2(g)}$
	(vol*mol)-(massM/24.305*2)
	(()) (()) (()) () () () () () () () () (
	Vol: 40-55 mL, two decimal
	mol: 1.0-1.3 M, two decimal
	massM: 0.1 to 0.42, two decimal
Dood	https://opanetay.org/books/chamistry_20/pages/4_4_respection_violds
Keau	https://openstax.org/dooks/chemistry-2e/pages/4-4-reaction-yields
More	
Video	Youtube: https://youtu.be/X ZfPT41JA0
	Gdrive: https://drive.google.com/file/d/119Rrl0i7H_0PGpPc-
	XWpwVXHbwpxa6pV/view?usp=sharing
Unit 4_	Canvas Question Type: Formula
Question	
27	
	If [mass] g of copper(II) oxide is reacted with excess hydrogen gas and [yield] g of copper is
	collected what is the percent yield?
	concered, what is the percent yield.
	$CuO_{(s)} + H_{2(g)} \rightarrow Cu_{(s)} + H_2O_{(l)}$
	100*yield/(mass/79.5454*63.546)
	mass: 5 to 7 g two decimals
	vield: 2.5 to 3.5 two decimals
Read	https://openstax.org/books/chemistry-2e/pages/4-4-reaction-yields
More	
<i>T</i> :	
Titrations	
Unit 4	Canvas Ouestion Type: Formula
Ouestion	
28	
	It requires [vol] mL of [M] M NaOH to fully titrate [vola] mL of HCl, what is the molarity of
	the acid?

	vol*M/vola
	vol: 20-50 mL, two decimal
	M: 0.5 to 0.9, two decimal
	vola: 20-50 mL, two decimal
Read	https://openstax.org/books/chemistry-2e/pages/4-5-quantitative-chemical-analysis
More	
Unit 4_	Canvas Question Type: Formula
Question	
29	
**	Potassium hydrogen phthalate (KHP) is a monoprotic weak acid that is often used to
	standardize solutions for titrations. If it requires [vol] mL of a sodium hydroxide solution to
	completely react [mass] g of KHP (Molar Mass: 204.222 g/mol), what is the molarity of the
	sodium hydroxide?
	mass/204.222/(vol/1000)
	mass: 1.5 to 2.5, two decimals
	vol: 50-70 mL, two decimals
Read	https://openstax.org/books/chemistry-2e/pages/4-5-quantitative-chemical-analysis
More	
Unit 4_	Canvas Question Type: Formula
Question	
30	
**	How many mL of [mola] M HCl would be required to completely react [mass] g of CaSO ₃
	$CaSO_{3(s)} + 2HCl_{(aq)} \rightarrow SO_{2(g)} + H_2O_{(1)} + CaCl_{2(aq)}$
	(m /120, 17*2)/m - 1- *1000
	(mass/120.1/*2)/mola*1000
	mass: 2-4, two decimals
	mola: 0.9 to 1.2 two decimals
Read	https://openstax.org/books/chemistry-2e/pages/4-5-quantitative-chemical-analysis
More	in person opensantorg soons, enemble j 20, pages, i s quandante enembler analysis

Video	Youtube: <u>https://youtu.be/2Jy1Z42ksQw</u>
	Gdrive: https://drive.google.com/file/d/1xQEA/sosHZMEhBv4-
	HIXEXVUTICAWUTUEVV/VIEW (USP=SHalling